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8. THE UNDECIDABLE 
 

§8.1. Axiomatic Systems 
 As I’ve said, mathematical truth is established by 

logic, starting with some 

fundamental assumptions called 

axioms. One is obliged to accept 

the conclusions provided one 

accepts the logical principles 

used as well as the axioms. 

There is a real sense in which a 

set of axioms is a creed, like a 

religious creed. 

 

 Euclid is credited with devising the first set of 

axioms – the axioms for Geometry or, as we now consider 

it, the axioms for Euclidean Geometry. These axioms 

were considered to be ‘self-evident’. Axioms such as 

“between any two distinct points there is exactly one 

straight line”. Far from being self-evident, this is based on 

experimental evidence and has the same status as a 

scientific ‘fact’. 

 

 Axioms for other mathematical systems were 

proposed in the late 19th century. The first were the 

axioms of group theory. Never mind what group theory is 

or what the axioms are. Rather than self-evident truths 

they were considered to simply make up a definition of a 

group. 
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 These days there’s much controversy about gay 

marriage. Some regard it as self-evident that ‘marriage’ 

means an arrangement between a man and a woman. In 

fact, it’s merely the definition of the word ‘marriage’. 

Certainly there’s no doubt that this is what was implied 

by the word over centuries. Others say the definition 

should be broadened. There’s a long history of the 

meaning of words being broadened. 

 ‘Money’ once referred to what we now call 

‘currency’ – coins and notes, but the meaning has been 

broadened to include electronic transactions. That doesn’t 

mean that the meaning of ‘marriage’ should be 

broadened. There are strong arguments on both sides. The 

point I’m making is that each person who uses the word 

‘marriage’ should be prepared to state their definition. 

 

 The attitude towards Euclid’s axioms changed in 

the eighteenth century. They were no longer considered 

to be self-evident, but merely part of the definition of a 

particular geometry called Euclidean geometry. Other, 

slightly different, sets of axioms were set up for other 

geometries. From a mathematical point of view all of 

them are correct. It’s up to the scientist, the physicist, the 

cosmologist, to decide which is correct for our universe. 

And the jury is still out on that question. 

 

 A rather different state of affairs exists for Set 

Theory. A ‘set’ is a collection of ‘things’. In Axiomatic 

Set Theory these things are mathematical objects. Now 
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unlike Group Theory, where there are lots of systems 

satisfying the axioms, in axiomatic set theory we are 

attempting to describe a concept that we hold intuitively. 

 

§8.2. The Russell Paradox 
 Set theory has come to underlie all of mathematics, 

so in a sense it is the foundation for all mathematics. Up 

to the end of the 19th century it was considered that the 

truths of set theory were self-evident, just as we don’t fuss 

too much about the logic we employ. One of the 

assumptions is that for any property that things might 

have there is a corresponding set, consisting of all the 

things that have that property. This is the process of 

turning an adjective into a noun. ‘Black’ is an adjective, 

so there is the set of all black things. But the philosopher 

Bertrand Russell, who was interested in the foundations 

of mathematics, pointed out that the set of all sets that do 

not belong to themselves is self-contradictory. 

 

 Perhaps a bit of notation will help us to understand 

this. The fundamental property of sets is that things 

belong to them. We denote the fact that the thing x 

belongs to the set S by the notation x  S. 

 

 If P is a property, like being black, and x is a thing, 

we denote the statement that x has the property P by Px. 

So if c = a crow and Bx = “x is black” then Bc is a true 

statement, while Bs is false if x = a dove. Crows are black 

but doves are not. 
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 The set that corresponds to the property P is 

denoted by {x | Px}. Read it as “the set of all x such that 

Px (or Px is true). The naïve assumption was that for all 

properties P there must be a set {x | Px}. 

 

 Russell considered the property of something not 

belonging to itself – in the sense of set belonging. Here 

the something is a set. A set can belong to another set 

because it is possible to have sets of sets, or sets of sets of 

sets .... 

 If T is the set of all pairs of distinct whole numbers 

then the set {3, 5}, consisting of just 3 and 5, would 

belong to T. 

 The symbol for “not belonging” is , just like the 

symbol for “not equals” is obtained by crossing out the 

equals sign, as in . Now some sets clearly don’t belong 

to themselves. The set of all positive numbers is not a 

positive number. But the set of all sets is a set.  

 

 So Russell said, what if S = {x | x  x}?  This would 

be the set of all sets that are not members of themselves. 

This would be the case for most sets we might think of. 

 

 The set of all even numbers is not an even number. 

The set of all triangles is not a triangle. The set of all 

infinite sets is an infinite set. 
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 The question is: 

 

Does S belong to S? 

 

Clearly the answer would have to be either “yes” or “no”, 

but let’s consider each possibility in turn. 

 

SUPPOSE that S  S. 

Then it must satisfy the corresponding property, that is S 

 S. This is a contradiction. 

 

SUPPOSE that S  S. 

Then S satisfies the property that defines S and so S  S. 

Again, a contradiction. 

 

This seems like one of those logical paradoxes like the 

sentence “THIS SENTENCE IS FALSE”. But we can’t 

ignore it. Under our naïve concept of set theory such a set 

exists. If we want to ban it from being a set we’d better 

explain to it why it’s being kicked out! 

 

 This may also remind you of the argument from the 

chapter on the uncountable. The difference is that in that 

case there was an assumption that led to the contradiction. 

If one can find a different chairman for every committee 

then we get a contradiction. Therefore it’s impossible to 

provide a different chairman for every committee. It is 

false that there is the same number of subsets as elements. 
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 But with the Russell Paradox there appears to be no 

such initial assumption, apart from the intuitively obvious 

‘fact’ that for every property there’s a set of all things with 

that property. Well, then, intuitively obvious or not, this 

assumption has to go. 

 

 Here we have a fundamental contradiction in set 

theory. And since we want to build mathematics upon set 

theory, all of mathematics would fall to the ground if we 

didn’t remove such a flaw. If you allow a single 

contradiction into mathematics you can prove anything. 

 

 I remember one of my lecturers telling me this and 

when someone asked him to prove that he was the Pope, 

assuming that 0 = 1, he said, “If 0 = 1 then, adding 1 to 

both sides, then 1 = 2. The Pope and I are two people, so 

the Pope and I are the one person. QED.” 

 

 Well, you can imagine the fuss that Russell’s 

Paradox caused when it was first announced. At least it 

caused a fuss amongst those who were bothered about the 

foundations of mathematics. 

 Ordinary working mathematicians just said, “oh, 

that’s interesting” and went back to their work. They 

knew that someone would fix up the problem, and that 

they did. 

 

 The way of fixing up the problem was to set up a 

collection of axioms that made some restrictions on which 
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properties do lead to a set. There have been several 

formulations but they have all been proved to be 

equivalent to one another. The most well-known set of 

axioms are called the ZF axioms, after their proposers 

Zermelo and Fraenkel. I won’t list them here because 

they’re long and sound quite technical. Basically they 

mostly say that “if such and such is a set the so and so is 

a set”. They are all dependent on already having some sets 

with which to make other sets - except for the first axiom, 

the existence of the empty set. 

 

 The empty set is the set with no elements. It doesn’t 

matter what the no elements are. The set of unicorns is the 

same empty set as the set of elves or the set of whole 

numbers lying strictly between 1 and 2. Axiom 1 in the 

ZF system says: There exists a set corresponding to the 

property x  x, that is {x | x  x} exists. The symbol for 

the empty set is . Now you might be thinking that is silly 

to have a set with nothing in it. 

 

“Oh, I have a collection of vintage Rolls Royce 

automobiles.” 

“Wow!  How many have you got?” 

“Oh, it’s the empty set.” 

 

 Stupid as it might seem, where would we be 

without the number zero? For centuries zero was never 

considered a number. Why have a number for something 

that doesn’t exist. Yet, our modern system of notation for 
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numbers relies on zero. The difference between my bank 

balance and that of Bill Gates is just a whole lot of zeros! 

 

 Now there’s something rather delightful in the fact 

that all of mathematics can be manufactured from the 

empty set. First there’s the set {} that contains just the 

empty set. It isn’t the empty set itself because it does have 

something in it, even though that something is empty. 

Then there is {, {}}. 

 This set contains two sets, the empty set itself, and 

the set consisting of the empty set. It might seem that 

we’re splitting hairs here, but the distinction between  

and {} is important. In fact, when the number 2 is 

defined it is defined in this way of developing 

mathematics, it is the set {, {}} and 3 is {, {}, {, 

{}}. 

 

 If this seems a rather esoteric way of defining the 

number 3, let me ask how you would define it. I’m sure 

what you might come up with would be more intelligible 

to a typical kindergarten pupil than {, {}, {, {}} 

but it wouldn’t stand up to the high standard of rigour that 

professional mathematicians require. 

 

 You might say that this shows that God created 

mathematics. Just as God created the world from a void 

he created the whole of mathematics from the empty set! 

On the other hand, if you are somewhat of an atheist, at 

least you’ll find a resonance between mathematics being 
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created from the empty set and the big-bang theory of how 

the universe began. 

 

§8.3. Axioms for Mathematics 
Almost all of mathematics can be built up from the 

following axioms. They are called the Zermelo-Fraenkel 

Axioms, or ZF for short. Other 

foundations have been 

suggested, but they are all 

equivalent to the ZF creed. For 

‘creed’ it is – just as a religious 

creed. They are statements 

whose truths are taken without 

proof. One just has to believe in 

them. Remember that it is not 

possible to prove something 

from nothing. 

 

In addition, there are 

assumptions about logic, we would be considering logical 

axioms as well. These will regulate the use of words such 

as ‘and’, ‘or’ and ‘implies’. 

 

Six of the eight ZF axioms are: 

 

Equality: Two sets are equal if they have precisely the 

same elements. 

 

Empty Set: There is a set with no elements. 
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Pairs: If S, T are sets there is a set with just S and T as 

elements. 

Powers: If S is a set so is the set of all subsets of S. 

 

Union: If S is a set so is the set of all elements of elements 

of S. 

 

Specification: If S is a set and P is any property that can 

be expressed entirely in terms of set membership, then 

there is a set whose elements are precisely those elements 

of S for which the property holds. 

 

 The other two axioms are a bit more technical, so 

I’ll omit them. A full discussion can be found in my notes 

on Set Theory. On the basis of these eight axioms virtually 

the whole of mathematics can be built. (This is outlined 

in my Set Theory Notes.) 

 

 So can we now be assured that no further 

contradiction, like Russell’s Paradox will arise? This 

amounts to asking whether the ZF axioms are consistent. 

The slightly disturbing answer is that no, we do not know 

that they are consistent. Most mathematicians believe that 

they are, but most mathematicians believe that we will 

never be able to prove consistency. 
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§8.4. Consistency 
  A set of axioms is inconsistent if a contradiction 

can be validly derived from them. If it is not inconsistent 

then it is defined to be consistent. The easiest way to 

prove consistency is to come up with a model for the 

axioms, that is, an actual interpretation that satisfies all 

the axioms. 

 

 It’s easy to come up with an inconsistent set of 

axioms. For example consider the following axioms for a 

super number. The set of super numbers has two 

operations, called addition and multiplication, such that 

the following axioms hold. 

 

Axiom 1: There’s a super number 0, such that n + 0 = n 

for all super numbers, n. 

 

Axiom 2: There is a super number 1 such that 1 + 1  1. 

 

Axiom 3: 

(x + y)z = xy + xz for all super numbers x, y and z. 

 

Axiom 4: There’s a super number  such that 0 = 1. 

 

This system of axioms is inconsistent. Here’s a proof. 

 

By axiom 1: 0 + 0 = 0, and so (0 + 0) = 0. 

By axiom 3: 0 + 0 = 0. 

By axiom 4: 1 + 1 = 1, contradicting axiom 2. 
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 Here’s another rather exotic axiomatic system that 

I’ve constructed to illustrate the concept of consistency. I 

call the system a society. In a society there’s a set of 

undefined things called persons and three undefined 

relations: 

father of, 

mother of, 

married to 

 

 Now the terminology suggests we’re thinking of 

family relationships, and certainly that’s what inspired 

these axioms. But it must be emphasized that these things 

called ‘persons’ are to be considered as undefined and so 

we must not make any use of what we know of actual 

family relationships. 

 

 We assume the following axioms: 

 

Axiom 1: There exists a person. 

 

Axiom 2: Each person has a unique mother and a unique 

father. 

 

Axiom 3: If two people have the same mother then they 

have the same father. 

 

Axiom 4: The mother and father of every person must be 

married. 
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Axiom 5: If two people have the same father they can’t 

marry. 

 

 You will probably question whether these axioms 

capture the complexities of modern family life, but that’s 

not the question. 

 

 I’d like to define a parent to be a ‘person’ who’s 

either a mother or a father and a grandmother to be the 

mother of a parent. 

 

Theorem 1: Every person has exactly two grandmothers. 

Proof: Let Peter be a person. 

By Axiom 2 Peter has exactly one father, who we’ll call 

Frank, and exactly one mother, called Michelle. 

By Axiom 4, Frank is married to Michelle. 

Suppose Frank = Michelle. 

Then by axiom 4, Frank is married to himself, 

contradicting Axiom 5. Hence Frank  Michelle. 

 

By Axiom 2, Frank has exactly one mother, denoted by 

Mildred and Michelle has exactly one mother, denoted by 

Mary. 

 

Suppose Mildred = Mary. That is, suppose Frank has the 

same mother as Michelle. Then by Axiom 3 Frank and 

Michelle have the same father, denoted by Phillip. 
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By Axiom 5, Frank and Michelle can’t marry, 

contradicting what we proved earlier. 

 

Hence Mildred  Mary and so Peter has exactly two 

grandmothers. 

 

 Notice that I proved the theorem only using the 

axioms, and without appealing to my intuition, or 

knowledge of society. Now are these axioms consistent? 

There’s no point in proving theorems for a non-existent 

system. To do this we need to devise a model – a concrete 

example in which these axioms hold. 

 

 Here’s a model for this system. A ‘person’ is one 

of the positive integers 1, 2, 3, … The father of n is 2n and 

the mother of n is 2n + 1. Person m is married to person n 

if m + n is odd. This system is a society. 

 Now this model is quite different to the one I might 

have had in mind when constructing these axioms. For a 

start it allows polygamy on a grand scale. Since odd + 

even is odd, person 2 (and any even person for that matter) 

is married to every odd person. This is indeed an odd 

model! But let’s check the axioms. 

 

Axiom 1 and Axiom 2 are clearly true for this model. 

 

Axiom 3: If m and n have the same mother then 2n + 1 = 

2m + 1 and so 2n = 2m, which means that they have the 

same father. 
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Axiom 4: The father and mother of person n are 2n and 

2n + 1 respectively. Since their sum is odd, they are 

married. 

 

Axiom 5: If m and n have the same father the 2m = 2n and 

so m = n. Thus m + n is even and so they can’t be married. 

 

 The fact that a model exists for a society, means 

that the axioms are consistent. But societies as described 

by these axioms can be very different to the model I had 

in mind when I devised the axioms. 

 

 In Axiomatic Set Theory we often consider extra 

‘optional axioms’. We could add optional axioms to make 

it more like the society of people and their families. But 

we would have to be very flexible, because there some 

rather strange family relationships in today’s society. 

  

   I’M MY OWN GRANDPA! 
Many, many years ago when I was twenty-three 
I was married to a widow who was as pretty as could be 
This widow had a grown-up daughter who had hair of red 
My father fell in love with her and soon they too were wed. 
 
This made my dad my son-in-law and really changed my life. 
For now my daughter was my mother, ‘cause she was my 
father’s wife. 
And to complicate the matter, even though it brought me joy 
I soon became the father of a bouncing baby boy. 
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My little baby boy then became a brother-in-law to Dad 
And so became my uncle, though it made me very sad, 
For if he were my uncle, then that also made him brother 
Of the widow’s grown-up daughter, who was of course my 
step-mother. 

 
Father’s wife then had a son who kept them on the run, 
And he became my grandchild, for he was my daughter’s 
son. 
My wife is now my mother’s mother and it makes me blue 
Because although she is my wife, she’s my grandmother too. 

 
Now if my wife is my grandmother, then I’m her grandchild, 
And every time I think of it, it nearly drives me wild. 
‘Cause now I have become the strangest case you ever saw 
As husband of my grandmother, I’m my own grandpa. 

 
I’m my own grandpa 
It sounds funny, I know but it is really so 
I’m my own grandpa. 

 
Written by Latham Dwight and Jeff Moe and published by 

Colgems-EMI Music. 

 

§8.5. The Axiom of Choice 
 Now, what’s really interesting is that there a few 

things that can’t be proved from the ZF axioms which 

most mathematicians believe are true. One of these is the 

Axiom of Choice, abbreviated to AXC. In a nutshell the 

AXC says that if you have a whole bunch of non-empty 

sets you can simultaneously choose one thing out of each 

of them. This seems an obvious enough statement but, 
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remember that it says that this is possible, even if the sets 

are infinite and even if there are infinitely many of them. 

 

 Of course such a choice is impossible in practice 

because it would take infinite time, but we’re not talking 

about ‘in practice’. The question is, does such a choice 

exist and can they choices form a set? (The last question 

is not quite the one that is asked, but it’s near enough for 

our purposes.) 

 

 The Axiom of Choice has been proved to be 

consistent with, and independent of, the ZF axioms. To 

show this you assume the ZF axioms and construct a 

model in which not only the ZF axioms hold, but also the 

Axiom of Choice. That’s the ‘consistent with’ part. Then 

you construct a different model, with a different definition 

of ‘belonging to’ that satisfies the ZF axioms but does not 

satisfy the Axiom of Choice. That’s the ‘independent of’ 

half of the statement. Putting these halves together we 

come up with the statement: 

 

THE AXIOM OF CHOICE IS UNDECIDABLE. 

 

 This means that, assuming the ZF axioms are 

consistent, you’ll never be able to prove that the AXC is 

true. But nor will you ever be able to prove that it’s false. 

If ever a contradiction arises in mathematics when using 

the Axiom of Choice it won’t be the fault of that axiom. 

It will mean that an inconsistency will have been found in 
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the ZF axioms themselves. If ever a contradiction arises 

from denying the Axiom of Choice it will mean that the 

ZF axioms themselves are inconsistent, not the denial 

itself. 

  

 The bottom line is that you are free to choose! You 

can believe in AXC or not. Both positions are logically 

valid. Naturally, like most mathematicians, you will no 

doubt opt to believe in AXC. It sounds so plausible. But 

before you become a paid-up member of the Axiom of 

Choice religion, let me point out the following 

consequence of the Axiom of 

Choice. 

 

 It has been proved, assuming 

the ZF axioms, together with the 

AXC, that in principle it’s 

possible to take a solid ball and 

dissect it into several pieces and 

to reassemble the pieces to 

make two solid balls of the same size as the original one! 

 Your reaction to this is probably to say that this 

proves that the AXC is false. After all, such a situation 

would contradict the law of conservation of volume, 
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surely. If you take a piece of wood its volume would 

remain constant no matter how you cut it up and 

reassembled the pieces. That is, ignoring the sawdust 

which, of course, we’re doing. 

 

 However the law of conservation of volume only 

applies if the pieces have a defined volume. If a set of 

points is highly fragmented, like a cloud of infinitely 

small particles, then it’s not possible to define its volume. 

 

 The way of dissecting the original sphere and 

reassembling them is not something one could replicate, 

even with precision tools. If it was possible to convert one 

ounce of gold into two with a laser cutter, the price of gold 

would plummet! The ‘pieces’ that are required to perform 

this magic are so highly fragmented that their volumes 

don’t exist. 

 

 Needless to say, while most mathematicians are 

happy to accept the Axiom of Choice, because it 

simplifies the statements of many of their theorems, 

there’s a determined minority who reject it. A comforting 

thought is that no bridge will ever fall down because its 

engineer believed or didn’t believe in the AXC. 
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 The difference between believing or not believing 

is more aesthetic than practical. In this sense it’s rather 

different to a religious belief. The Axiom of Choice 

believers will never wage war on the infidels, and no 

mathematician will become a martyr to his or her belief. 

The general consensus is that one should try not to use the 

Axiom of Choice, but if necessary one uses it, and admits 

that it is “on the basis of the Axiom of Choice”. 

 

§8.6. The Peano Axioms 
The very first mathematical system we ever 

encountered was the system of the natural numbers  1, 2, 

3, … When we did so, in kindergarten or even before, we 

were not interested in precise definitions. We learnt the 

many properties of natural numbers on the authority of 

our parents and teachers. 

Nowhere did we see a definition of the number 2, 

or a precise proof of the fact that 2 + 2 = 4. We might have 

experimented with a few pairs of objects and observed 

that combining one with another we got a collection 

which, when we counted, gave us 4. Hence we learnt our 

mathematics as an experimental science. 

 

Of course we did notice that sometimes it didn’t 

work. Pour a litre of water into a bowl containing a litre 

of sugar and you’ll find you get a whole lot less than a 

litre of sugar syrup. This can be explained, in part, by the 

air spaces between the grains of sugar, but to account for 

the reduction in volume completely you need to take the 
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chemistry of solutions into account. Nevertheless you 

understood that something different is going on here and 

that 1 + 1 = 2 is still valid mathematically. 

 

 One approach to constructing the natural numbers, 

and their arithmetic, rigorously is to build them up as sets 

of sets of sets within axiomatic set theory. Another 

approach is to define them by a set of axioms, the Peano 

Axioms. 

 

We postulate a set of undefined things, together 

with an undefined function successor. You can think of 

the successor of n as n + 1, written n+, However that 

interpretation isn’t specifically part of the axioms and, 

moreover, we need to define addition and then prove that 

n+ = n + 1 from the axioms. 

 

Axiom 1: 0 is a natural number. 

 

Axiom 2: If n is a natural number then so is n+. 

 

Axiom 3: There’s no natural number n for which n+ = 0. 

Axiom 4: If S is any set of natural numbers that contains 

0, and contains n+ whenever it contains n, then S is the set 

of all natural numbers. 

 

 On the basis of these axioms we can define addition 

and multiplication and prove the basic properties of 

arithmetic. 
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§8.7. Gödel’s Incompleteness Theorem 
 We’ve seen how mathematical systems, such as set 

theory, can be built up on the basis of a set of axioms. 

Provided that a set of axioms is consistent we can prove 

meaningful theorems about the system. But can we prove 

every true statement from the axioms? 

 If we left out one of the set theory axioms there 

would be true statements about arithmetic that couldn’t be 

proved. A set of axioms is complete if every true 

statement about the system can be proved. Are the ZF 

axioms complete? 

 The answer is no. Well, then, we’d better add some 

extra axioms to make it complete. Unfortunately that’s 

not possible. 

 In 1931 Kurt Gödel proved that, not only are the ZF 

axioms incomplete. It’s not possible for a finite set of 

axioms to exist for any formal system in which basic 

arithmetic can be formulated, such that the axioms are 

complete. 

 He did this by converting every statement in such a 

system into an arithmetic statement. He managed to 

express to express the statement “this statement cannot be 

proved from the axioms” as a statement about arithmetic. 

Such a self-referential statement cannot be proved from 

the axioms, yet it’s a true statement and corresponds to a 

true statement about arithmetic. 

 

 Gödel’s original proof is very long, and very hard 

to read. A much simpler proof by Nagel & Newman in 
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2001 converts the statement to one about computability, 

and uses the machinery of Turing Machine to show that 

completeness would imply that the halting problem could 

be solved, which we know is impossible. 

 So here we are left with this unsatisfactory state of 

affairs. The ZF axioms on which the whole of 

mathematics can be built, cannot be proved to be 

consistent, but it can be proved to be incomplete. 

 So it is possible that a contradiction could be 

deduced from these axioms. But if, as we hope, they are 

consistent, they are certainly incomplete. There are truths 

about arithmetic (though not ones we’d be ever likely to 

meet) that can’t be proved from any finite set of axioms! 

Mathematics is very far from being cut and dried. 

 

 At the heart of Gödel’s proof is a very clever 

method for converting statements about the system into 

arithmetic statements within the system. For a start, 

statements are expressed symbolically, such as: 

x(−(x = 0) →y(xy = 1)) 

which means “for all x, if x is not equal to zero then there 

exists y such that x times y is equal to 1”. 

 Gödel devised a system for coding these statements 

as a number by assigning a code to each symbol and 

building up a number for each statement on the basis of 

that. So, given a number n one could, if that n indeed 

represented a statement, decode it and so obtain the 

corresponding statement G(n). Every possible statement 
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would have a code, but not every code would correspond 

to a valid statement. 

  The numbers involved would be extremely large, 

but as this is an ‘in principle’ exercise, that isn’t a worry. 

 

 Now consider the statement that a given statement 

S is provable. A proof is just a list of statements, where 

each one is an axiom, or a previously proved theorem, or 

a logical consequence of the previous ones, and where the 

statement of the theorem is the last in the list. There’s a 

mechanical way of testing the validity of a proof and so 

one could, in principle, write a computer program for 

testing whether a given statement is provable from the 

axioms. It would be a case of generating all possible lists 

of statements that have S as the last statement, and then 

testing the ‘proof’ for validity. 

 Gödel showed how provability could be expressed 

as an arithmetic statement about natural numbers and so 

the statement P(n) = ‘the statement with Gödel number n 

is provable’ can be expressed as an arithmetic statement 

and so will have a certain Gödel number. Similarly, the 

statement N(n) = ‘the statement with Gödel number n is 

not provable’ has a Gödel number, say g. 

 

 Gödel then asked whether N(g) is true or false. The 

statement N(g) claims that it, itself, is unprovable. Thus 

we can obtain, as a purely arithmetic statement within the 

language of arithmetic, a statement which claims “I am 

unprovable”. 
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 Now such a statement can’t be false because being 

false would mean it was provable and hence true. It must 

therefore be true and hence it’s a true but unprovable 

statement in arithmetic. But wait! Haven’t we just proved 

that it’s true? 

 

 Certainly we gave a meta-mathematical proof. But 

this proof is not one which could be expressed as an 

arithmetic proof within the system. Our unprovable 

statement is not unprovable in any absolute sense. It might 

not even be meaningful to talk about absolute 

unprovability. 

 N(g) is unprovable in the relative sense that no 

proof of it could ever be constructed which starts from the 

axioms and proceeds using the rules of inference. And 

even if the axioms and rules were supplemented by others, 

so long as they remained finite in number, the existence 

of unprovable statements would remain. 
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JOKE: PALINDROME 
 

 An Englishman, an Irishman and a Scotsman go 

into a bar. An American, who was already in the bar 

comes up to the Englishman and says, “Hey buddie, if you 

can tell me a good joke, I’ll buy you a beer”. 

 So the Englishman clears his throat and says, “37”. 

At this the bar erupts into an uproar of laughter. The 

American looks puzzled, but says, “well it appears that 

was a great joke, so what’ll you have?” 

 A little later the American goes up to the Scotsman 

and says, “I’ll buy you a whisky if you can beat that last 

joke”. The Scotsman stands on a stool, adjusts his kilt and 

says, “42”. Once again the bar erupts into laughter, even 

louder than before. Several patrons are so carried away by 

their laughter that they roll around on the floor. So the 

American buys the Scotsman a Scotch. 

 A little later the American turns to the Irishman and 

says, “You Irish are renowned for your wonderful 

humour. I bet you can top that last joke – if you do, I’ll 

buy you a pint of Guinness”. 

So the Irishman jumps up on the bar, adjusts his 

cap, and says, “93”. There’s deathly silence. Not even a 

murmur is heard. The American looks puzzled. 

“I’ve worked out that you folks must number your 

jokes so that all you have to do is to give the joke number 

and you all know what the joke is. But back in the States 

we tell our jokes in full. Now I’m a little puzzled why that 

last joke fell so flat. What went wrong?” 
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“Ah”, says the Scotsman, “you know what the Irish 

are like. They’re always getting things back to front.” 

“Well”, said the American, “would you mind 

telling me that last joke in full”. 

“Och, aye”, said the Scotsman, “but are ye sure ye 

want to hear it. As I said it’s not very funny”. 

“Well, yes”, said the American, “I’m fascinated by 

British humour”. 

“OK”, says the Scotsman, “Joke number 93 goes like this. 

An Englishman, an Irishman and a Scotsman go into a 

bar. An American, who was already in the bar comes up 

to the Englishman and says, “Hey buddie, if you can tell 

me a good joke I’ll buy you a beer”. So the Englishman 

clears his throat and says, “37”. 

 


