8. THE UNDECIDABLE

§8.1. Axiomatic Systems

As I’ve said, mathematical truth is established by
logic, starting with some
fundamental assumptions called
axioms. One is obliged to accept
the conclusions provided one
accepts the logical principles
used as well as the axioms.
There is a real sense in which a
set of axioms is a creed, like a
religious creed.

Euclid is credited with devising the first set of
axioms — the axioms for Geometry or, as we now consider
it, the axioms for Euclidean Geometry. These axioms
were considered to be ‘self-evident’. Axioms such as
“between any two distinct points there is exactly one
straight line”. Far from being self-evident, this is based on
experimental evidence and has the same status as a
scientific ‘fact’.

Axioms for other mathematical systems were
proposed in the late 19" century. The first were the
axioms of group theory. Never mind what group theory is
or what the axioms are. Rather than self-evident truths
they were considered to simply make up a definition of a

group.
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These days there’s much controversy about gay
marriage. Some regard it as self-evident that ‘marriage’
means an arrangement between a man and a woman. In
fact, it’s merely the definition of the word ‘marriage’.
Certainly there’s no doubt that this is what was implied
by the word over centuries. Others say the definition
should be broadened. There’s a long history of the
meaning of words being broadened.

‘Money’ once referred to what we now call
‘currency’ — coins and notes, but the meaning has been
broadened to include electronic transactions. That doesn’t
mean that the meaning of ‘marriage’ should be
broadened. There are strong arguments on both sides. The
point I’m making is that each person who uses the word
‘marriage’ should be prepared to state their definition.

The attitude towards Euclid’s axioms changed in
the eighteenth century. They were no longer considered
to be self-evident, but merely part of the definition of a
particular geometry called Euclidean geometry. Other,
slightly different, sets of axioms were set up for other
geometries. From a mathematical point of view all of
them are correct. It’s up to the scientist, the physicist, the
cosmologist, to decide which is correct for our universe.
And the jury is still out on that question.

A rather different state of affairs exists for Set

Theory. A ‘set’ is a collection of ‘things’. In Axiomatic
Set Theory these things are mathematical objects. Now
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unlike Group Theory, where there are lots of systems
satisfying the axioms, in axiomatic set theory we are
attempting to describe a concept that we hold intuitively.

88.2. The Russell Paradox

Set theory has come to underlie all of mathematics,
so in a sense it is the foundation for all mathematics. Up
to the end of the 19" century it was considered that the
truths of set theory were self-evident, just as we don’t fuss
too much about the logic we employ. One of the
assumptions is that for any property that things might
have there is a corresponding set, consisting of all the
things that have that property. This is the process of
turning an adjective into a noun. ‘Black’ is an adjective,
so there is the set of all black things. But the philosopher
Bertrand Russell, who was interested in the foundations
of mathematics, pointed out that the set of all sets that do
not belong to themselves is self-contradictory.

Perhaps a bit of notation will help us to understand
this. The fundamental property of sets is that things
belong to them. We denote the fact that the thing x
belongs to the set S by the notation x € S.

If P is a property, like being black, and x is a thing,
we denote the statement that x has the property P by Px.
So if ¢ = a crow and Bx = “X is black” then Bc is a true
statement, while Bs is false if x = a dove. Crows are black
but doves are not.
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The set that corresponds to the property P is
denoted by {x | Px}. Read it as “the set of all x such that
Px (or Px is true). The naive assumption was that for all
properties P there must be a set {x | Px}.

Russell considered the property of something not
belonging to itself — in the sense of set belonging. Here
the something is a set. A set can belong to another set
because it is possible to have sets of sets, or sets of sets of
sets ...

If T is the set of all pairs of distinct whole numbers
then the set {3, 5}, consisting of just 3 and 5, would
belongto T.

The symbol for “not belonging” is ¢, just like the
symbol for “not equals” is obtained by crossing out the
equals sign, as in = Now some sets clearly don’t belong
to themselves. The set of all positive numbers is not a
positive number. But the set of all sets is a set.

So Russell said, what if S = {x | x ¢ x}? This would
be the set of all sets that are not members of themselves.
This would be the case for most sets we might think of.

The set of all even numbers is not an even number.

The set of all triangles is not a triangle. The set of all
infinite sets is an infinite set.
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The question is:
Does S belong to S?

Clearly the answer would have to be either “yes” or “no”,
but let’s consider each possibility in turn.

SUPPOSE that S € S.
Then it must satisfy the corresponding property, that is S
¢ S. This is a contradiction.

SUPPOSE that S ¢ S.
Then S satisfies the property that defines Sandso S € S.
Again, a contradiction.

This seems like one of those logical paradoxes like the
sentence “THIS SENTENCE IS FALSE”. But we can’t
ignore it. Under our naive concept of set theory such a set
exists. If we want to ban it from being a set we’d better
explain to it why it’s being kicked out!

This may also remind you of the argument from the
chapter on the uncountable. The difference is that in that
case there was an assumption that led to the contradiction.
If one can find a different chairman for every committee
then we get a contradiction. Therefore it’s impossible to
provide a different chairman for every committee. It is
false that there is the same number of subsets as elements.
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But with the Russell Paradox there appears to be no
such initial assumption, apart from the intuitively obvious
‘fact’ that for every property there’s a set of all things with
that property. Well, then, intuitively obvious or not, this
assumption has to go.

Here we have a fundamental contradiction in set
theory. And since we want to build mathematics upon set
theory, all of mathematics would fall to the ground if we
didn’t remove such a flaw. If you allow a single
contradiction into mathematics you can prove anything.

| remember one of my lecturers telling me this and
when someone asked him to prove that he was the Pope,
assuming that 0 = 1, he said, “If 0 = 1 then, adding 1 to
both sides, then 1 = 2. The Pope and | are two people, so
the Pope and | are the one person. QED.”

Well, you can imagine the fuss that Russell’s
Paradox caused when it was first announced. At least it
caused a fuss amongst those who were bothered about the
foundations of mathematics.

Ordinary working mathematicians just said, “oh,
that’s interesting” and went back to their work. They
knew that someone would fix up the problem, and that
they did.

The way of fixing up the problem was to set up a
collection of axioms that made some restrictions on which
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properties do lead to a set. There have been several
formulations but they have all been proved to be
equivalent to one another. The most well-known set of
axioms are called the ZF axioms, after their proposers
Zermelo and Fraenkel. T won’t list them here because
they’re long and sound quite technical. Basically they
mostly say that “if such and such is a set the so and so is
aset”. They are all dependent on already having some sets
with which to make other sets - except for the first axiom,
the existence of the empty set.

The empty set is the set with no elements. It doesn’t
matter what the no elements are. The set of unicorns is the
same empty set as the set of elves or the set of whole
numbers lying strictly between 1 and 2. Axiom 1 in the
ZF system says: There exists a set corresponding to the
property x # X, that is {x | x # x} exists. The symbol for
the empty set is &. Now you might be thinking that is silly
to have a set with nothing in it.

“Oh, T have a collection of vintage Rolls Royce
automobiles.”

“Wow! How many have you got?”

“Oh, it’s the empty set.”

Stupid as it might seem, where would we be
without the number zero? For centuries zero was never
considered a number. Why have a number for something
that doesn’t exist. Yet, our modern system of notation for
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numbers relies on zero. The difference between my bank
balance and that of Bill Gates is just a whole lot of zeros!

Now there’s something rather delightful in the fact
that all of mathematics can be manufactured from the
empty set. First there’s the set {J} that contains just the
empty set. It isn’t the empty set itself because it does have
something in it, even though that something is empty.
Then there is {J, {}}.

This set contains two sets, the empty set itself, and
the set consisting of the empty set. It might seem that
we’re splitting hairs here, but the distinction between &
and {<J} is important. In fact, when the number 2 is
defined it is defined in this way of developing
mathematics, it is the set {J, {J}} and 3 is {, {T}, {T,

{9}}.

If this seems a rather esoteric way of defining the
number 3, let me ask how you would define it. I’'m sure
what you might come up with would be more intelligible
to a typical kindergarten pupil than {J, {Z}, {9, {Z}}
but it wouldn’t stand up to the high standard of rigour that
professional mathematicians require.

You might say that this shows that God created
mathematics. Just as God created the world from a void
he created the whole of mathematics from the empty set!
On the other hand, if you are somewhat of an atheist, at
least you’ll find a resonance between mathematics being
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created from the empty set and the big-bang theory of how
the universe began.

88.3. Axioms for Mathematics

Almost all of mathematics can be built up from the
following axioms. They are called the Zermelo-Fraenkel
Axioms, or ZF for short. Other
foundations have been
suggested, but they are all
equivalent to the ZF creed. For
‘creed’ it is — just as a religious
creed. They are statements
whose truths are taken without
proof. One just has to believe in
them. Remember that it is not
possible to prove something
from nothing.

In addition, there are
assumptions about logic, we would be considering logical
axioms as well. These will regulate the use of words such
as ‘and’, ‘or’ and ‘implies’.

Six of the eight ZF axioms are:

Equality: Two sets are equal if they have precisely the
same elements.

Empty Set: There is a set with no elements.
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Pairs: If S, T are sets there is a set with just S and T as
elements.
Powers: If S is a set so is the set of all subsets of S.

Union: If Sis aset sois the set of all elements of elements
of S.

Specification: If S is a set and P is any property that can
be expressed entirely in terms of set membership, then
there is a set whose elements are precisely those elements
of S for which the property holds.

The other two axioms are a bit more technical, so
I’11 omit them. A full discussion can be found in my notes
on Set Theory. On the basis of these eight axioms virtually
the whole of mathematics can be built. (This is outlined
in my Set Theory Notes.)

So can we now be assured that no further
contradiction, like Russell’s Paradox will arise? This
amounts to asking whether the ZF axioms are consistent.
The slightly disturbing answer is that no, we do not know
that they are consistent. Most mathematicians believe that
they are, but most mathematicians believe that we will
never be able to prove consistency.
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88.4. Consistency

A set of axioms is inconsistent if a contradiction
can be validly derived from them. If it is not inconsistent
then it is defined to be consistent. The easiest way to
prove consistency is to come up with a model for the
axioms, that is, an actual interpretation that satisfies all
the axioms.

It’s easy to come up with an inconsistent set of
axioms. For example consider the following axioms for a
super number. The set of super numbers has two
operations, called addition and multiplication, such that
the following axioms hold.

Axiom 1: There’s a super number 0, such that n + 0 = n
for all super numbers, n.

Axiom 2: There is a super number 1 such that 1 + 1 = 1.

Axiom 3:
(x +y)z = xy + xz for all super numbers x, y and z.

Axiom 4: There’s a super number oo such that Oco = 1.
This system of axioms is inconsistent. Here’s a proof.
By axiom 1: 0 + 0 =0, and so (0 + 0)oo = QOoo,

By axiom 3: Oco + Qoo = Qoo.
By axiom 4: 1 + 1 =1, contradicting axiom 2.
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Here’s another rather exotic axiomatic system that

I’ve constructed to illustrate the concept of consistency. |
call the system a society. In a society there’s a set of
undefined things called persons and three undefined
relations:

father of,

mother of,

married to

Now the terminology suggests we’re thinking of
family relationships, and certainly that’s what inspired
these axioms. But it must be emphasized that these things
called ‘persons’ are to be considered as undefined and so
we must not make any use of what we know of actual
family relationships.

We assume the following axioms:
Axiom 1: There exists a person.

Axiom 2: Each person has a unique mother and a unique
father.

Axiom 3: If two people have the same mother then they
have the same father.

Axiom 4: The mother and father of every person must be
married.
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Axiom 5: If two people have the same father they can’t
marry.

You will probably question whether these axioms
capture the complexities of modern family life, but that’s
not the question.

I’d like to define a parent to be a ‘person’ who’s
either a mother or a father and a grandmother to be the
mother of a parent.

Theorem 1: Every person has exactly two grandmothers.
Proof: Let Peter be a person.

By Axiom 2 Peter has exactly one father, who we’ll call
Frank, and exactly one mother, called Michelle.

By Axiom 4, Frank is married to Michelle.

Suppose Frank = Michelle.

Then by axiom 4, Frank is married to himself,
contradicting Axiom 5. Hence Frank = Michelle.

By Axiom 2, Frank has exactly one mother, denoted by
Mildred and Michelle has exactly one mother, denoted by
Mary.

Suppose Mildred = Mary. That is, suppose Frank has the

same mother as Michelle. Then by Axiom 3 Frank and
Michelle have the same father, denoted by Phillip.
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By Axiom 5, Frank and Michelle can’t marry,
contradicting what we proved earlier.

Hence Mildred = Mary and so Peter has exactly two
grandmothers.

Notice that | proved the theorem only using the
axioms, and without appealing to my intuition, or
knowledge of society. Now are these axioms consistent?
There’s no point in proving theorems for a non-existent
system. To do this we need to devise a model —a concrete
example in which these axioms hold.

Here’s a model for this system. A ‘person’ is one
of the positive integers 1, 2, 3, ... The father of n is 2n and
the mother of nis 2n + 1. Person m is married to person n
if m + nis odd. This system is a society.

Now this model is quite different to the one | might
have had in mind when constructing these axioms. For a
start it allows polygamy on a grand scale. Since odd +
even is odd, person 2 (and any even person for that matter)
IS married to every odd person. This is indeed an odd
model! But let’s check the axioms.

Axiom 1 and Axiom 2 are clearly true for this model.
Axiom 3: If m and n have the same mother then2n+ 1 =

2m + 1 and so 2n = 2m, which means that they have the
same father.
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Axiom 4: The father and mother of person n are 2n and
2n + 1 respectively. Since their sum is odd, they are
married.

Axiom 5: If m and n have the same father the 2m = 2n and
so m=n. Thus m + n is even and so they can’t be married.

The fact that a model exists for a society, means
that the axioms are consistent. But societies as described
by these axioms can be very different to the model | had
in mind when | devised the axioms.

In Axiomatic Set Theory we often consider extra
‘optional axioms’. We could add optional axioms to make
it more like the society of people and their families. But
we would have to be very flexible, because there some
rather strange family relationships in today’s society.

I'M MY OWN GRANDPA!
Many, many years ago when | was twenty-three
| was married to a widow who was as pretty as could be
This widow had a grown-up daughter who had hair of red
My father fell in love with her and soon they too were wed.

This made my dad my son-in-law and really changed my life.
For now my daughter was my mother, ‘cause she was my
father’'s wife.

And to complicate the matter, even though it brought me joy
| soon became the father of a bouncing baby boy.
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My little baby boy then became a brother-in-law to Dad

And so became my uncle, though it made me very sad,

For if he were my uncle, then that also made him brother

Of the widow’s grown-up daughter, who was of course my
step-mother.

Father’s wife then had a son who kept them on the run,

And he became my grandchild, for he was my daughter’s
son.

My wife is now my mother’'s mother and it makes me blue
Because although she is my wife, she’s my grandmother too.

Now if my wife is my grandmother, then I'm her grandchild,
And every time | think of it, it nearly drives me wild.

‘Cause now | have become the strangest case you ever saw
As husband of my grandmother, ’'m my own grandpa.

I’m my own grandpa
It sounds funny, | know but it is really so
I’'m my own grandpa.

Written by Latham Dwight and Jeff Moe and published by
Colgems-EMI Music.

88.5. The Axiom of Choice

Now, what’s really interesting is that there a few
things that can’t be proved from the ZF axioms which
most mathematicians believe are true. One of these is the
Axiom of Choice, abbreviated to AXC. In a nutshell the
AXC says that if you have a whole bunch of non-empty
sets you can simultaneously choose one thing out of each
of them. This seems an obvious enough statement but,
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remember that it says that this is possible, even if the sets
are infinite and even if there are infinitely many of them.

Of course such a choice is impossible in practice
because it would take infinite time, but we’re not talking
about ‘in practice’. The question is, does such a choice
exist and can they choices form a set? (The last question
IS not quite the one that is asked, but it’s near enough for
our purposes.)

The Axiom of Choice has been proved to be
consistent with, and independent of, the ZF axioms. To
show this you assume the ZF axioms and construct a
model in which not only the ZF axioms hold, but also the
Axiom of Choice. That’s the ‘consistent with’ part. Then
you construct a different model, with a different definition
of ‘belonging to’ that satisfies the ZF axioms but does not
satisfy the Axiom of Choice. That’s the ‘independent of’
half of the statement. Putting these halves together we
come up with the statement:

THE AXIOM OF CHOICE IS UNDECIDABLE.

This means that, assuming the ZF axioms are
consistent, you’ll never be able to prove that the AXC is
true. But nor will you ever be able to prove that it’s false.
If ever a contradiction arises in mathematics when using
the Axiom of Choice it won’t be the fault of that axiom.
It will mean that an inconsistency will have been found in
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the ZF axioms themselves. If ever a contradiction arises
from denying the Axiom of Choice it will mean that the
ZF axioms themselves are inconsistent, not the denial
itself.

The bottom line is that you are free to choose! You
can believe in AXC or not. Both positions are logically
valid. Naturally, like most mathematicians, you will no
doubt opt to believe in AXC. It sounds so plausible. But
before you become a paid-up member of the Axiom of
Choice religion, let me point out the following

. consequence of the Axiom of
> Choice.
Axiom of
Choice:

It has been proved, assuming
the ZF axioms, together with the
AXC, that in principle it’s
possible to take a solid ball and
: | dissect it into several pieces and
— to reassemble the pieces to
make two solid balls of the same size as the original one!

108

7,] | choosenot
to use it t

SELF

Your reaction to this is probably to say that this
proves that the AXC is false. After all, such a situation
would contradict the law of conservation of volume,
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surely. If you take a piece of wood its volume would
remain constant no matter how you cut it up and
reassembled the pieces. That is, ignoring the sawdust
which, of course, we’re doing.

However the law of conservation of volume only
applies if the pieces have a defined volume. If a set of
points is highly fragmented, like a cloud of infinitely
small particles, then it’s not possible to define its volume.

The way of dissecting the original sphere and
reassembling them is not something one could replicate,
even with precision tools. If it was possible to convert one
ounce of gold into two with a laser cutter, the price of gold
would plummet! The ‘pieces’ that are required to perform
this magic are so highly fragmented that their volumes
don’t exist.

Needless to say, while most mathematicians are
happy to accept the Axiom of Choice, because it
simplifies the statements of many of their theorems,
there’s a determined minority who reject it. A comforting
thought is that no bridge will ever fall down because its
engineer believed or didn’t believe in the AXC.

OH AN, WE

MADE A BREY. WJE SHOULD DYSASSEHGE " Imony
e IT, CHECK ALL THE PARTS, A, cRAR T
S e D1 AND FUT IT BACK TOGETHER L oF e,

I T S
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The difference between believing or not believing
IS more aesthetic than practical. In this sense it’s rather
different to a religious belief. The Axiom of Choice
believers will never wage war on the infidels, and no
mathematician will become a martyr to his or her belief.
The general consensus is that one should try not to use the
Axiom of Choice, but if necessary one uses it, and admits
that it is “on the basis of the Axiom of Choice”.

§88.6. The Peano Axioms

The very first mathematical system we ever
encountered was the system of the natural numbers 1, 2,
3, ... When we did so, in kindergarten or even before, we
were not interested in precise definitions. We learnt the
many properties of natural numbers on the authority of
our parents and teachers.

Nowhere did we see a definition of the number 2,
or a precise proof of the fact that 2 + 2 = 4. We might have
experimented with a few pairs of objects and observed
that combining one with another we got a collection
which, when we counted, gave us 4. Hence we learnt our
mathematics as an experimental science.

Of course we did notice that sometimes it didn’t
work. Pour a litre of water into a bowl containing a litre
of sugar and you’ll find you get a whole lot less than a
litre of sugar syrup. This can be explained, in part, by the
air spaces between the grains of sugar, but to account for
the reduction in volume completely you need to take the
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chemistry of solutions into account. Nevertheless you
understood that something different is going on here and
that 1 + 1 = 2 is still valid mathematically.

One approach to constructing the natural numbers,
and their arithmetic, rigorously is to build them up as sets
of sets of sets within axiomatic set theory. Another
approach is to define them by a set of axioms, the Peano
Axioms.

We postulate a set of undefined things, together
with an undefined function successor. You can think of
the successor of n as n + 1, written n*, However that
Interpretation isn’t specifically part of the axioms and,
moreover, we need to define addition and then prove that
n*=n+ 1 from the axioms.

Axiom 1: 0 is a natural number.
Axiom 2: If n is a natural number then so is n*.
Axiom 3: There’s no natural number n for which n* = 0.
Axiom 4: If S is any set of natural numbers that contains
0, and contains n* whenever it contains n, then S is the set
of all natural numbers.

On the basis of these axioms we can define addition

and multiplication and prove the basic properties of
arithmetic.
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88.7. Godel’s Incompleteness Theorem

We’ve seen how mathematical systems, such as set
theory, can be built up on the basis of a set of axioms.
Provided that a set of axioms is consistent we can prove
meaningful theorems about the system. But can we prove
every true statement from the axioms?

If we left out one of the set theory axioms there
would be true statements about arithmetic that couldn’t be
proved. A set of axioms is complete if every true
statement about the system can be proved. Are the ZF
axioms complete?

The answer 1s no. Well, then, we’d better add some
extra axioms to make it complete. Unfortunately that’s
not possible.

In 1931 Kurt Gédel proved that, not only are the ZF
axioms incomplete. It’s not possible for a finite set of
axioms to exist for any formal system in which basic
arithmetic can be formulated, such that the axioms are
complete.

He did this by converting every statement in such a
system into an arithmetic statement. He managed to
express to express the statement “this statement cannot be
proved from the axioms” as a statement about arithmetic.
Such a self-referential statement cannot be proved from
the axioms, yet it’s a true statement and corresponds to a
true statement about arithmetic.

Godel’s original proof is very long, and very hard
to read. A much simpler proof by Nagel & Newman in
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2001 converts the statement to one about computability,
and uses the machinery of Turing Machine to show that
completeness would imply that the halting problem could
be solved, which we know is impossible.

So here we are left with this unsatisfactory state of
affairs. The ZF axioms on which the whole of
mathematics can be built, cannot be proved to be
consistent, but it can be proved to be incomplete.

So it is possible that a contradiction could be
deduced from these axioms. But if, as we hope, they are
consistent, they are certainly incomplete. There are truths
about arithmetic (though not ones we’d be ever likely to
meet) that can’t be proved from any finite set of axioms!
Mathematics is very far from being cut and dried.

At the heart of Godel’s proof is a very clever
method for converting statements about the system into
arithmetic statements within the system. For a start,
statements are expressed symbolically, such as:

VX(=(x = 0) ->3y(xy = 1))
which means “for all X, if x is not equal to zero then there
exists y such that x times y is equal to 1”.

Gaodel devised a system for coding these statements
as a number by assigning a code to each symbol and
building up a number for each statement on the basis of
that. So, given a number n one could, if that n indeed
represented a statement, decode it and so obtain the
corresponding statement G(n). Every possible statement
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would have a code, but not every code would correspond
to a valid statement.

The numbers involved would be extremely large,
but as this is an ‘in principle’ exercise, that isn’t a worry.

Now consider the statement that a given statement
S is provable. A proof is just a list of statements, where
each one is an axiom, or a previously proved theorem, or
a logical consequence of the previous ones, and where the
statement of the theorem is the last in the list. There’s a
mechanical way of testing the validity of a proof and so
one could, in principle, write a computer program for
testing whether a given statement is provable from the
axioms. It would be a case of generating all possible lists
of statements that have S as the last statement, and then
testing the ‘proof” for validity.

Gdodel showed how provability could be expressed
as an arithmetic statement about natural numbers and so
the statement P(n) = ‘the statement with Godel number n
Is provable’ can be expressed as an arithmetic statement
and so will have a certain Godel number. Similarly, the
statement N(n) = ‘the statement with Godel number n is
not provable’ has a Godel number, say g.

Godel then asked whether N(g) is true or false. The
statement N(g) claims that it, itself, is unprovable. Thus
we can obtain, as a purely arithmetic statement within the
language of arithmetic, a statement which claims “I am
unprovable”.
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Now such a statement can’t be false because being
false would mean it was provable and hence true. It must
therefore be true and hence it’s a true but unprovable
statement in arithmetic. But wait! Haven’t we just proved
that it’s true?

Certainly we gave a meta-mathematical proof. But
this proof is not one which could be expressed as an
arithmetic proof within the system. Our unprovable
statement is not unprovable in any absolute sense. It might
not even be meaningful to talk about absolute
unprovability.

N(g) is unprovable in the relative sense that no
proof of it could ever be constructed which starts from the
axioms and proceeds using the rules of inference. And
even if the axioms and rules were supplemented by others,
so long as they remained finite in number, the existence
of unprovable statements would remain.
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JOKE: PALINDROME

An Englishman, an Irishman and a Scotsman go
into a bar. An American, who was already in the bar
comes up to the Englishman and says, “Hey buddie, if you
can tell me a good joke, I’ll buy you a beer”.

So the Englishman clears his throat and says, “37”.
At this the bar erupts into an uproar of laughter. The
American looks puzzled, but says, “well it appears that
was a great joke, so what’ll you have?”

A little later the American goes up to the Scotsman
and says, “I’ll buy you a whisky if you can beat that last
joke”. The Scotsman stands on a stool, adjusts his kilt and
says, “42”. Once again the bar erupts into laughter, even
louder than before. Several patrons are so carried away by
their laughter that they roll around on the floor. So the
American buys the Scotsman a Scotch.

A little later the American turns to the Irishman and
says, “You Irish are renowned for your wonderful
humour. | bet you can top that last joke — if you do, I'll
buy you a pint of Guinness”.

So the Irishman jumps up on the bar, adjusts his
cap, and says, “93”. There’s deathly silence. Not even a
murmur is heard. The American looks puzzled.

“I’ve worked out that you folks must number your
jokes so that all you have to do is to give the joke number
and you all know what the joke is. But back in the States
we tell our jokes in full. Now I’m a little puzzled why that
last joke fell so flat. What went wrong?”
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“Ah”, says the Scotsman, “you know what the Irish
are like. They’re always getting things back to front.”

“Well”, said the American, “would you mind
telling me that last joke in full”.

“Och, aye”, said the Scotsman, “but are ye sure ye
want to hear it. As I said it’s not very funny”.

“Well, yes”, said the American, “I’m fascinated by
British humour”.
“OK”, says the Scotsman, “Joke number 93 goes like this.
An Englishman, an Irishman and a Scotsman go into a
bar. An American, who was already in the bar comes up
to the Englishman and says, “Hey buddie, if you can tell
me a good joke I’ll buy you a beer”. So the Englishman
clears his throat and says, “37”.
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